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This paper examines the dynamical behaviour of a field of homogeneous turbulence in which the
joint-probability distribution of the fluctuating velocity components at three points is approxi-
mately normal. In principle, the analysis is formulated entirely in terms of the mean values
wu] and  wujup,

where the number of primes denotes the point at which the velocity components are taken.
First, the kinematical properties of the three-point correlation are obtained by techniques similar
to those used in the well-known theory of the two-point correlation. In the particular case of
isotropic turbulence, the necessary extensions to the existing invariant theory lead to the result
that the three-point correlation is completely defined by two scalar functions. Two independent
dynamical relations between these correlations are then derived from the Navier-Stokes equation,
and the remainder of the paper is based on this (determinate) system of equations. These remarks
refer only to the principle of the calculations; in fact, most of the results are obtained in terms of
the Fourier transforms of the correlations defined above.

The first set of deductions from the governing equations refer to the decay of isotropic turbulence
at large Reynolds numbers. In particular, the exact solution of the inviscid equations for the
vorticity is obtained, and it is shown to be consistent with the predictions of Kolmogoroff’s theory
of local similarity after a sufficiently long time of decay. The distribution of energy transfer between
eddies of different sizes is also examined for a special form of the energy spectrum of turbulence, and
the general features of this distribution appear to be satisfactory in the main energy-containing
range of the spectrum.

The remaining results are concerned with energy transfer in the large eddies. It is shown,
beyond all reasonable doubt, that the magnitude of this energy transfer is such that the large
eddies are not permanent during decay. Immediate consequences of this result are that Loitsiansky’s
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164 I. PROUDMAN AND W. H. REID ON THE

integral is not an invariant of the motion, and that the usual triple correlation function k() is pro-
portional to r—* for large values of . These conclusions are inconsistent with the theory initiated by
Loitsiansky, and developed by Lin and Batchelor. The cause of this inconsistency is attributed to
the dynamical unlikelihood of the basic assumptions made by these earlier authors.

GENERAL INTRODUCTION

The hypothesis that the joint-probability distribution of fluctuating velocity components
at two different points in homogeneous turbulence is approximately normal has played an
important part in recent research in the subject. It has been used both in the form stated
above and in an alternative form, the equivalence of which was pointed out by Batchelor
(1951). In the alternative hypothesis, which was first made by Heisenberg (1948), it is
supposed that the random Fourier coeflicients of the velocity distribution are statistically
independent. The second assumption is more special than the first, inasmuch as it implies
that the joint-probability distribution of velocity components taken simultaneously at any
number of points in the turbulence is of the normal form. The analysis of the present paper
involves the assumption that certain properties of the joint-probability distribution of the
velocity components at ¢hree different points are of the normal form.

Since there is no a priori reason why a quantity that must satisfy the equations of con-
tinuity and motion should be distributed according to the normal law, itis necessary to appeal
to experimental evidence for support for the hypothesis. Much of this has been collected
together by Batchelor (1951). So far as they go, the experiments indicate that the Fourier
coeflicients of the velocity field at two different wave-numbers are approximatelystatistically
independent, provided both these wave-numbers are small compared with a certain wave-
number which itself appears to be sufficiently large to make the hypothesis reasonably
accurate over the greater part of the energy spectrum of turbulence. Recent measurements
by Uberoi (1953) are consistent with this conclusion. There is little reason for doubting
Batchelor’s comment on the necessary qualification to the hypothesis: it is that the motion
of the smallest eddies is most strongly affected by the inertial interaction between different
wave-numbers, and that the corresponding Fourier coeflicients should therefore exhibit the
greatest deviation from statistical independence.

In one or other of the forms indicated above, the hypothesis has been made the basis of
a discussion of the statistical properties of the pressure field by Heisenberg (1948), by
Obukhoff (1949) and by Batchelor (1951). On the other hand, the application of the
hypothesis to the central problem of the decay of homogeneous turbulence has received
comparatively little attention in the literature. Yet it was in this connexion that the approxi-
mation was first introduced into the subject by Millionshtchikov (19414, 6). The details of
Millionshtchikov’s work, which was restricted to the small Reynolds number conditions
pertaining to the final period of decay, need not concern us here, but the principle developed
by him is relevant. Itis that, although the mechanism of decay is intimately connected with
the skewness of the joint-probability distribution of the velocity components at two points
in the turbulence (a quantity which is zero for a normal distribution), the form of the
equations of fluid motion is such that the mechanical development of this skewness may be
calculated in detail if it is assumed that the relation between certain mean values involving

1 Subject to certain mathematical conditions that are unlikely to cause trouble in the physical problem.
See, for example, Batchelor (1953).
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products of four and two velocity components is the one appropriate to a normal pro-
bability distribution. In this way, an approximate theory of decay may be developed, which
takes into account the skewness whose physical significance is the all-important inertial
exchange of energy between eddies of different sizes.

Thus, the favourable experimental evidence and the importance of the problem of decay
together provide ample justification for examining the dynamical consequences of the
hypothesis in question. Moreover, there is some interest to beattached to an examination of
the problem of decay on the basis of a direct assumption about the fundamental probability
distribution, as opposed to the more usual procedure of discussing the physical nature of the
transfer of energy between eddies of different sizes. For the approach, being of a rather
different type, may be expected to yield a different type of information and thus to
further an understanding of the mechanics of homogeneous turbulence.

The purpose of the present contribution, therefore, is to derive the dynamical equations
that follow from the hypothesis, and to present some properties of the solutions of these
equations. Part I of the paper is concerned with the formal derivation of the dynamical
equations and includes the necessary extensions to the existing kinematical analysis. In
part II, some features of the solutions of these equations are discussed which correspond to
the decay of isotropic turbulence at large Reynolds numbers. Among the results obtained
in this part of the paper are some which indicate that the existing theory of the motion of
the largest eddies is inadequate. Consequently, part III contains a re-examination of the
general problem of energy transfer at small wave-numbers, mainly on the basis of the special
type of probability distribution assumed throughout the earlier parts, but also, to some
extent, for general fields of homogeneous turbulence.

PART I. GENERAL KINEMATICS AND DYNAMICS

1. KINEMATICAL RELATIONS IN HOMOGENEOUS TURBULENCE

Consider a homogeneous turbulent motion of an incompressible fluid, in which the mean
velocity is zero. If u(x) denotes the velocity at the point X, then the condition of statistical
homogeneity requires that the velocity-product mean values

R;(r) = w;(X) u;(x+r) (1)
and Ry (r, ') = u,(X) uj(X+1) up (X +1’) (2)

A

should be functions only of the variables indicated.t In a discussion of the dynamical pro-
perties of the tensors (1) and (2), it is necessary to consider mean values of certain products
involving the pressure. Thus, if p(X) denotes the deviation of the pressure at the point X from
its uniform mean value, and p denotes the uniform density of the fluid, these new tensors are

B(r) = p() u(x ) ®)

and By{r,x) = ) u(x 1) 5% 1), (4)

1 And, of course, of the time. Throughout the paper, physical quantities under a mean-value sign are
always taken at the same instant, and explicit reference to the time in this context is omitted.

21-2
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166 I. PROUDMAN AND W. H. REID ON THE

which, by virtue of the homogeneity, are again functions only of the variables indicated. In
the boundary-free problem of homogeneous turbulence, the pressure field is determined
uniquely by the velocity field, but the relationship is cumbersome, and, for kinematical
purposes, it is more convenient to introduce new symbols for the tensors (3) and (4) and to
regard them as independent of tensors of the type (1) and (2). At a later stage, these tensors
involving the pressure will be eliminated from the analysis.

All these tensors satisfy certain symmetry conditions, obtained by permuting the products
under the mean-value sign. Thus, corresponding to the well-known condition

Ry(r) = R;(—1), ()
the third-order tensor R;;(r,r’) satisfies the cyclic condition
Ry (r,1’) = Rjki(rl'—r) —r), (6)
and the acyclic condition R (r,1') = Ry, (r',1). (7)
Similarly, the tensor (4) satisfies the condition
Pij(r) I") = P]‘i(r,> I'). (8)
The incompressibility condition % =0 (9)
yields the further result that each tensor is solenoidal in every index. Thus, for the velocity-
product mean values, P )
%Rij(r) = gr;Rij(r) =0 (10)
(7 (3 n o a AN a N __
and (a_r,—’_ﬁ_r,') Ry(r,1’) = Q;;Rz'jk (r,r') = a_'rléRijk (r,r’) =0, (11)
and for mean values involving the pressure,
J
JB(r)=0 (12)
d 0 P ’ U P ’
an A (T, 1) = 3 (1) = 0. (13)

By virtue of the symmetry conditions (5) to (8), only one of the solenoidal conditions in each
line is independent; but when deriving the forms of these tensors appropriate to isotropic
turbulence, it is usually more convenient to impose all the solenoidal conditions before
considering the further consequences of symmetry.

Now, it has already been noted that the fundamental approximation to be made in the
dynamical equations is one that is not equally good in all eddy sizes. More precisely, the
approximation is only reasonable for those Fourier components of the velocity whose wave-
number is small compared with some empirically determined value. There is therefore good
reason for dealing with the Fourier transforms of the tensors (1) to (4), since by so doing,
careful account may be kept of those regions of the spectrum in which the theory is likely
to be applicable. Moreover, the transformation to Fourier space introduces greater mathe-
matical tractability, inasmuch as spatial differential operators transform into algebraic
operators. This last simplification is particularly important for tensor functions of more
than one vector variable, such as are considered in this paper.
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DECAY OF A NORMALLY DISTRIBUTED VELOCITY FIELD 167

Accordingly, corresponding to the well-known spectral tensor
@, (k) = (2m)" fR,.j(r) e-ikrdr, (14)
the six-dimensional Fourier transform of R;;;(r,r’) may be defined by the equation
Dy, K) = i(2m)° [ [Rys(r, ) -k drdr. (15)

In these equations, i = ,/(—1), and the integrations are over all the spaces of the r’s.
Similarly, Fourier transforms of the tensors involving the pressure may be defined by the
equations

I0L(k) = i(2n)-3 f P(r) e-ikrdr (16)
and 1, (k, k') = (2m)~° f f P,(r, 1) ek ¥0 drdr, (17)

All these spectral tensors exist if the moduli of the respective integrands are integrable,
i.e.if the tendency to statistical independence of conditions atlarge separations is sufficiently
rapid. This will be assumed to be the case.

The tensors occurring in the integrands of equations (14) to (17) represent the mean
values of products of physical quantities, and are consequently real. Hence the spectral
tensors are complex quantities with simple properties of the type

Of(k) = D;(—k) (18)

A

and Ok, K') = By (K, —K), (19)

ijk
where the asterisk denotes a complex conjugate.

The transformed versions of the symmetry conditions (5) to (7) follow immediately from
the definitions of the spectral tensors. Thus, corresponding to the well-known relation

@;(k) = @;(—k), (20)

which, in conjunction with (18), shows that ®,;(k) possesses Hermitian symmetry, the
third-order tensor @, (k, k) must satisfy the conditions

(I)ijk(ka k’) = (I)jki(k’3 —k*k,) (21)
and Dy (k, ') = Oy (K, k). (22)

It may be noted that the rearrangement of wave-numbers in (21) and (22) is quite different
from thatin (19), so that the third-order spectral tensor does not possess any specially simple
form by virtue of these conditions.

The solenoidal conditions (10) to (13), resulting from the equation of continuity, trans-
form into conditions of orthogonality in Fourier space. Thus,

kO, (K) = £, d,(k) — 0, (23)

(k) Dy, ') = &y Dy (I, ) = B, Dy, k') = 0, (24)

kIL(K) = o, (25)

and kT, (k, k) — K TI,(k, K') = 0. (26)
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168 I. PROUDMAN AND W. H. REID ON THE

In a later section, the isotropic forms are derived of tensors satisfying orthogonality con-
ditions of this type.

The task is now to construct the dynamical equations for ®;(k) and @, (k, k), making
use of the above geometrical simplifications resulting from the conditions of homogeneity
and continuity.

2. DynNAmICATL EQUATIONS IN HOMOGENEOUS TURBULENCE

The equations for the rates of change with time of the velocity-product mean values
R;;(r) and R, (r, 1) may be obtained by the methods first developed by von Kdrmén &
Howarth (1938) for isotropic turbulence. The dynamical equations for the spectral tensors

®,;(k) and @y, (k, k') then follow by Fourier transformation.

Thus, in the case of R;;(r),

d d du,
0 Ry(r) = L) ) = O,y (), (21)

ot S0t Y
where the operator O, acting on a second-order tensor Cj;(r) is such that

O,{C;(r)} = Cy(r) +Cj( —1). (28)
Substitution for du;(x)/d¢ from the Navier-Stokes equation

Ju;, 0 1dp )

ot~ o, ) _;%JFVV U; (29)
hen gi ) R ) P, > R
then gives R;(r) = { M (15 0) —I_?Z- %(r) —l—v;;; U(r)}. (30)

Since the operator O, is invariant with respect to a Fourier transformation, the transformed
version of (30) may be written
J T 1N 1’ o
508 = O, [l [ @1, k') i — &, LK) —vke (k) (1)
where £ = | k|. In the present notation, this is the equation first given by Batchelor (1949).
The tensor I1;(k), whichis derived from product mean values involving the pressure, may be

eliminated from (31) by making use of the incompressibility condition. Thus, multiplying
(31) by £, and using the orthogonality relations (23) and (25), one obtains

FTL(K) = kK f (K, k') dK, (32)
so that (31) becomes
) N
5:05(1) = Oyk (al it )fd)a], K, K) K’ vk, (K). (33)

Equation (33) is the first of two dynamical relations between the second- and third-order
spectral tensors.
T These equations can, of course, be obtained directly from the dynamical equation for a single Fourier

coefficient. The present technique of transforming the equation in physical space is used in order to provide
a record of the equations in either mode of representation.
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A similar procedure may be employed for R;;(r,r’) and @;;,(Kk,Kk’). From the definition

(2) of Ry (r,r’), we have "
J » {a"uf’(x) o -

SiRau(r, 1) =04 (X u ) (x4 (34)

where the operator O, acting on a third-order tensor ;ix(T, ") is such that
O,4{C (0, 1)} = Cp(t, ") + G (v —1, —1) + Ckij( —r',r—r’). (35)
With the Navier-Stokes equation, (34) then becomes

3R F) = Ol (3 g o) w0 )

J 9 , A /
R L E

The appearance of fourth-order velocity-product mean values on the right of equation
(36) is a reflexion, in the present analysis, of the central difficulty of the subject. Itis this
difficulty, namely, that the form of the Navier-Stokes equation is such that any finite system
of equations for mean values of fluctuating quantities necessarily contains more unknowns
than there are equations, which has been the subject of so much discussion since the early
days of the mixing-length theories. All{ contributions to this aspect of the problem have
related, explicitly or otherwise, product mean values of different order for the purpose of
making the dynamical problem determinate. As has already been indicated, the present
purpose is to examine the consequences of the hypothesis that fourth- and second-order
velocity-product mean values are related in the manner appropriate to a normal prob-
ability distribution. Equation (36) shows that the specific probability distribution con-
cerning which this assumption must be made is the joint-probability distribution of the
velocity vector at three different points in the turbulence. Thus, writing

u;(X) 4 (X) (X +T) (X +17) = 0(X) 0,(X) . 0;(X+ 1) (X +1")
+ (%) 15 (X 1) () (X1 1)
+1,(X) (X +1") sy (X) (X +1), (37)

equation (36) becomes

i Ron(E 1) = O3 (3] 4 ) Ry() Ri(e") + Ry(x”) Ry ()]

A NI ,
+(ﬁ+§r‘) Py(r, HV(ﬁ_fﬁi) Ry, (r, )}. (38)

With regard to the Fourier transformation of (38), it may be noted that if I’ (k, k') is
the Fourier transform of C;,(r, 1), in the sense of equation (15), then the Fourier transform
of O3{C;(r, ")} is

Qu{Tn(k, K)} = Tyjp(k, K) + Tk, —k—K') + I (~ k— k', k). (39)

T Except for the treatment by Hopf (1952), in which the dynamical problem of turbulence is considered
in its entirety.
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170 I. PROUDMAN AND W. H. REID ON THE

Hence the transformed version of (38) may be written
a ’ ’ ’ ’
5; P16 K') = Qy{— (B +-£) [D;(Kk) Dy (k) + Dy(K') D (k)]
— (kK Iy (K, K') —v(k4-K)? Dy (K, K) ). (40)
From this equation, the pressure, in the form of the tensor II;(k,k’), must again be
eliminated. Multiplying the equation by £;+ £, and using the orthogonality conditions (24)

and (26), one findst
(ki +k;)? Ty (R, K') = — (R 4-K) (R +hy) [ @) Dy (K) + Dy (k) D;(K) ], (41)
so that equation (40) becomes

d , ,
50, k) = Q= (k)| B

(it B (k, K,
(RENAL

T10,,06) @, (k) + 0, @, ()]
—v(hK) Oy (kK| (42)

For given initial conditions, the equations (33) and (42) now serve to determine the
unknown tensors @, (k) and @, (k, k') at subsequent times, over the range of wave numbers
in which the experiments show the underlying approximation to be reasonably accurate.
However, there remains the problem of how to obtain detailed results from these equations,
bearing in mind the complexity of the tensor algebra. In this connexion, and also for its
practical value, it is clearly important that the consequences of statistical isotropy should
be examined,? for the tensor equations then reduce to a system of relatively few scalar
equations. Accordingly, the isotropic forms of the various tensors and equations are con-
sidered in the following sections.

3. ISOTROPIC SPECTRAL TENSORS

The isotropic form of tensor functions of vector arguments may be found by the method,
based on a use of invariant theory, introduced by Robertson (1940). Moreover, since
isotropy in physical space implies isotropy in Fourier space, the method may be applied
directly to the Fourier transforms of isotropic tensors. Thus, the well-known result for a
second-order tensor function of a single wave-number vector is

¢ocﬂ(k) = ¢1kakﬁ+¢2 305/1’3 (43>
where the scalar coefficients ¢, and ¢, of the fundamental isotropic tensors are arbitrary
functions of #2. Similarly, the result for a third-order tensor function of two wave-number
vectors is easily found to be
¢oc/1’y(k) kl) = ¢1 kock/fky+¢2kakﬂk;’+¢3kak/ﬂk'y+¢4k/akﬁ‘k'y
’ ’ ’ ’ ! ’ ’ ’ ’
sk kpk, - bk kpk, + g ko kpk, + bk Kk,
+ ¢9 kalaﬂ'y + ¢10kﬁ’b\yo¢ + ¢11 kylaocﬁ‘
+ 19k, 3ﬁy+¢13kﬁ 3ya+¢14ky 3@,3, ’ (44)
 The resulting equation is the irrotational part of the dynamical equation, a special case of which yields
the pressure correlations already fully discussed by the authors referred to in the General Introduction.
+ This is not to say that the approximation of a normal probability distribution is any more valid in
isotropic turbulence than in general homogeneous turbulence. Indeed, it seems difficult to find an argument

against the existence of normal probability distributions in the more general case which does not apply
equally well to isotropic turbulence. The point is more to examine the theory first in the mathematically

simplest form.
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where the defining scalars ¢,,d,,... are now arbitrary functions of the three variables
k%, k2 =Kk’.K’, and k.k'. Of course, any three combinations of these latter quantities may
be taken as independent variables. From the physical standpoint, the set £2, £’ and

k//z _ k”.k”, WhCrC k—l—k’—l—k” — 0’ (45)

is probably the most significant, in view of the way in which tensors of this kind appear in
the dynamical equation (42).

As is well known, the principal difficulty in the kinematical analysis of isotropic tensors
arises not in finding the general forms (43) and (44), but in finding the further simplifica-
tions that follow from the equation of continuity. In physical space this requires a discussion
of tensors that are solenoidal, and in Fourier space the task is to find tensors satisfying the
orthogonality conditions (23) and (24). In either case, the number of independent scalar
functions required for the definition of such tensors is considerably reduced. Thus, direct
substitution of the orthogonality conditions (23) and (24) into the general isotropic forms
(43) and (44) leads to a set of algebraic relations between the general defining scalars from
which the required number of independent scalars may be derived. Excepting the specially
simple case of @;;(k), however, the derivation from these relations of the precise way in
which the independent scalars appear as coefficients of the fundamental isotropic tensors
is somewhat troublesome, and it is therefore considerably easier to use the alternative
approach described below, in which tensors are produced directly whose defining scalars
are in a convenient form and such that the relevant orthogonality conditions are satisfied
identically.t

Thus, consider the tensor

’ Ax(k) = 6 —kik, R, (46)
This is clearly orthogonal with respect to k in the index z (i.e. £;A#(k) = 0), and also
isotropic, since it is of the general form (43). Hence, if ¢, (K, K/, ...) is a general isotropic
tensor of any order, and a function of any number of wave-number vectors, then the tensor

q)ljk(k9 kl’ ) = A‘f(k> ¢ajk...(k9 k,ﬁ ) (47)

is a similar tensor, but with the further property that it is orthogonal with respect to k in
the index ¢. Moreover, the general tensor with this orthogonality property may be written
in the form (47), since it is always possible to choose the primary tensor ¢,; (K, K, ...) as
the most genetal tensor which is orthogonal with respect to k in the index «. The second
term in the definition of A#(k) then makes no contribution and (47) reduces to an identity.
In other words, A#(K) is an operator which selects from a general isotropic tensor that part
of it which satisfies the orthogonality condition in question. Repeated use of this operator
therefore constitutes a rapid and direct method of constructing isotropic tensors with
several orthogonality properties such as are encountered in turbulence theory.}

t The general idea of constructing tensors which satisfy the continuity condition identically is largely due
to Chandrasekhar (1950). The technique to be described may therefore be regarded as an extension of
Chandrasekhar’s results.

I Tt is worth noting that the technique represented by (47) is also applicable to the more general case of
homogeneous turbulence. Moreover, the corresponding analysis in physical space, in terms of the operator

Dz (r) = 6;,V?— 8%|0r, Or,, appears to offer no intrinsic difficulty, especially if the operator 0/dr; is adopted
as the fundamental vector instead of the vector 7; used by Robertson (1940).

Vor. 247. A. 22
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As an illustration, the second-order tensor ®;(K), satisfying the conditions (23), may be
derived from a primary tensor in the manner

(Dij(k) = A‘f(k) Af (k) ¢aﬂ(k)'

In this equation, ¢,4(k) is a general isotropic tensor of the form (43). However, the term in
kykg in (43) vanishes under the operator A#(k) A(k), so that the equation reduces to the

well-known form D, (k) = Az(k) AZ(K) 4,0,
ER)
=20 (5, kit 12, (48)

where the defining scalar is written in terms of the usual energy-spectrum function E(%).
Consider now the tensor @, (k, k'), which is required to satisfy the three orthogonality
conditions (24). This may be written in the manner

D, (k, k') = A7 (k") A (k) Af(K) g, (K, K), (49)
where the primary tensor must be of the form (44). However, eight of the fourteen funda-

mental isotropic tensors in equation (44) vanish identically under one or other of the
operators A?(k) and A}(k’), leaving only

ks Kb Ko

[+

2 0pys s 5 k. kgk, and K, ksk,.
Further, A¢(K") (k,04,+k,05,) =0
and A¢(K") (k Kk, +k, kgk,) = 0,
so that two more tensors may be rejected, which we choose as

ky0p, and Kk kjk,.

k5

Thus only four of the defining scalars of ¢, (K, k’) make a contribution to the orthogonal
tensor @, (K, k'), and the remaining scalars may be taken as zero. Hence (49) becomes

Dy, &) = A7(K") AF(K) AY(IC') [DF, 85, + Dy kpd,,+ Dok, b5+ WhEG,],  (50)

where the notation for the four scalars has been changed from that in (44).

So far, no account has been taken of the symmetry conditions (20), (21) and (22). In the
case of ®;(k), (20) yields no further information, since an isotropic second-order tensor is
ipso_facto symmetric. But further relations between the defining scalars of @, (k, k") follow
from these conditions. By virtue of the symmetry of the product

Ap(k") Af (k) Ax(K),

it is clear that the conditions (21) and (22) on @, (k,Kk’) impose identical conditions on
up,(K, K'). Hence we must have

Ok k") =—OF, K K"),
O, (k, k', k") =+ DK, K", k), o
O, (kK k") = —DE", K, k), (51)
]{P(k’ kl’ kll) —_ \P’(kl’ k”, k) U lI/‘(k/, k, kll),
+ In the present context, this is the analogue of the ‘gauge-invariance’ considered by Chandrasekhar
(1950).

and
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where the defining scalars in equation (50) are all regarded as being written with their
independent variables in the order £, &', £”. Thus there are only #wo independent third-order
velocity-product mean values in isotropic turbulence—a surprisingly small number.

Finally, it may be noted that the reality conditions (18) and (19) show that all the
defining scalars in equations (48) and (50) are real functions.

Having thus obtained an explicit representation of the basic spectral tensors of isotropic
turbulence in terms of defining scalars, we are now in a position to proceed with the
derivation of the dynamical equations for these scalars.

4. DyNAMICAL EQUATIONS IN ISOTROPIC TURBULENCE

"The well-known equation for the single defining scalar of ®;(k) is most easily found by
contracting the indices in equation (33). Thus, writing the resulting equation in the usual

form
) _ Ty vk h), (52)

the expression for the function 7'(k), which represents the rate of change of the energy
spectrum due to the inertial transfer of energy between different wave-numbers, is

T(k) = 4mkk, f D, (k, k') dk'. (53)

In terms of the defining scalars of @, (k, k’), this last result becomes

T(k) = gh,—z%é [2{k%(k"2—3k'%) — (k"2 —k'2) 2} D(k, k', k")
+2k"2(k"2—k2) O(K', k", k) —k"2QWY' (K, k', k")) dk’, (54)
where @ is the symmetric quartic
Q = K +-E 4+ k" —2R2%K'2 — 2k'2k"2 — 2k"2k2.

The expression (54) for the transfer function does not contain any approximation.
Consider next the equation (42) for ®,,(k, k). In terms of the vector K”, the operator
(23 is (cf. equation (39))

Q3{Pijk(k> k')} = Fijk(ka k’) + iji(k,> k”) + Pkij(k”> k),
so that equation (42) may be written

0 ! ” " ’ ’ ’ " ’
7 P (16, K) = Qufk/ A (K") [D;(k) (k") + Dy (K') Dy (K) [} —v (k2 + K2+ £"2) Dy (k, k).
(55)

Now the transformation of this last equation into an equivalent set of scalar equations may
be effected by writing every term in the orthogonal form (50) and equating the coefficients
of like tensors. The results for the term on the left and the second term on the right of
equation (55) are obvious, and it only remains to consider the first term on the right.

22-2
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Since the tensor under the operator (), in equation (55) possesses the same orthogonality
properties as @, (k,K’), namely, those set out in (24), it too may be represented in the
manner (50). Thus, substituting the isotropic forms of @, (k) and ®,(k’), one finds

kA (K") [D;(k) Dy (k) + Dy (K) Dy (K) |

L(k) E(F')

— Ap(K") M(R) AY(K) S i)

(k30,0 1k, 00p)- (56)
The final step consists of performing the operation €2, on the right-hand side of equation

(56) ; this yields the result

M) AP (R) A0k o[ D (ED EU
Ek") EF EE) (EK" Ek
+ERNEEL BN ks +ERER) EQLL s, )

Every term in equation (55) is now in the required form, and the dynamical equations
for the defining scalars of @, (k,k’) may be written down immediately. The two inde- -
pendent equations are

V. EG) 1K) E(k o -
SOk, k") = k?,Z[ 15,2) li(z):l—v(k2+k2+k 2) O(k, K, k") (58)
and (%‘F(k, K E") = —u(k2 K2 K" Wk, K, BY). (59)

These equations, together with (52) and (54), form the basis of all further results concerned
specifically with isotropic turbulence.

PART II. ON THE DECAY OF ISOTROPIC TURBULENCE
AT LARGE REYNOLDS NUMBERS

It will be clear from the complexity of the governing equations, even in the relatively
simple case of isotropic turbulence, that any attempt to determine the detailed course of
events following upon given initial conditions must necessarily involve a considerable
amount of numerical integration. Moreover, no really adequate assessment of the value of
the ideas developed in this paper can be made without recourse to such detailed numerical
methods. Nevertheless, it is possible to obtain by analytical methods one or two results of
a more general character that give some indication of the processes taking place. These
results, which refer to a field of isotropic turbulence in which inertia forces are dominant,
are presented in the following sections.

5. A DYNAMICAL PROPERTY OF @, (K, K’)

A curious feature of the dynamical equations (58) and (59) is the existence of two obvious
time integrals. The solutions in question are obtained from the fact that the quantities

W(k, k', k) and
Sk, K k") = Ok, K, k") + DK, K, k) + k", k, k) (60)
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both decay from their initial values by viscous action alone, and consequently have the
51mple forms \{p(k, /‘C/,k”, t) — I}.ﬁ(k, /‘C/, k”, t()) e_,,(k2+k'2+k”2) (t~to) (61)
and v Z(k, K,k t) — Z(/‘C, KK, tO) e—VEHE2HE) (t=t0), (62)

Apparently the interaction between @, (k,k’) and ®;(k) is such that only certain com-
ponents of the former tensor are affected, the remainder dying away in the manner of
viscous transients.

Unfortunately, in order to express this information in terms of the transfer function 7'(%),
it is necessary to perform the integration (54) over all k’-space. The symmetry of the solution
is then largely lost, and we have not been able to find any simple physical interpretation.
If the initial Reynolds number is at all large, however, the time scale of decay of the
transients (61) and (62) must also be large, and this raises interesting possibilities con-
cerning the length of the period of decay of the turbulence during which inertia forces are
appreciable. '

6. THE PRODUCTION OF VORTICITY BY THE STRAIN FIELD

When the Reynolds number is large, the mechanism which dominates the decay process
as a whole is the transfer of energy from large to small eddies. Now, unlike most contribu-
tions to the theory of decay, the assumptions underlying the present work do not make any
explicit reference to energy transfer, and it is by no means obvious that these assumptions
lead to a transfer mechanism which is physically acceptable even in its most elementary
essentials. It is not clear, for instance, whether or not energy is transferred in the right
direction, and it is important that such a general question as this should be settled.

Now, there exists a remarkably simple exact solution of the general inviscid equations
which is relevant to this problem. The solution in question concerns the integral

f " BE®) dk,
0

which is proportional to the mean-square vorticity of the turbulence. According to (52),
the inviscid rate of change of this quantity is given by

(% f: RE(K) dk — f : RT(k) dk, (63)

and the physical mechanism which (63) describes is the stretching of vortex lines by the
local strain field. For a transfer of energy from large to small eddies, the terms in (63) are
positive, and the average effect of the strain is an extension rather than a compression of the
vortex lines.

A second relation between the integrals occurring in (63) may be obtained by con-
sidering the inviscid rate of change of the transfer function 7°(k). Thus, differentiating with
respect to time the general expression (54) for this function, and substituting the rates of

change " ,
a romy . E(R") TE(K') E(k)
700K k) = 16| S ]
and Ol k) —o

ot
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in the integrand, one obtains after some reduction, the result
0T(k)  E(k) (=

© 2 ___ F2\3 _ k!
(13K — 8B 1 3k'4) E(k') di — 2 ) f (R —£7) ln( ktk ) B ax

a 12k%), 8k3 0, K |k—F"|
L " rk+E 4
If (64) is now multiplied by 42 and integrated over all values of £, there results the very
simple equation d =, or(e 9
d—tfo k T(k)dk:-?:UOkE(k)dk] . (65)
Combining (63) and (65), we have
& f " RE(K) dk — ?[ f " RE®k) d/f:r. (66)
de2)y 3LJo
Alternatively, if »? denotes the mean-square value of one component of vorticity, then
22 f " RE() dk,
3Jo
. S
so that (66) may be written qz (w?)2 (67)

For the type of probability distribution under discussion, this last equation is the statistical
analogue of Cauchy’s equation in a frictionless fluid. One integration gives

dw?)\? — —

(&) = 31— @, (68)
where @2 is a constant, and the solution of this last equation is the Weierstrassian elliptic
function 0 = Bap(x; 0,1), (69)

where, with a suitable choice of the origin of time,

5 — PR
In the physical problem, only one real period of the doubly periodic elliptic function is
relevant, i.e. 0 <x<2x,, where x,=1-53. The solution{ then has the form shown in figure 1.

Provided that viscous effects are neglected, the slope of the curve in figure 1 is proportional

to ®
| f KT (k) di,
0

and the sign of this slope is an overall measure of the direction of energy transfer. The
solution then shows that the only circumstances in which there is a general transfer of
energy from small to large eddies are those in which this situation is prescribed as part of the
initial conditions, i.e. when the initial conditions correspond to a point in the left-hand half
of the figure. Moreover, even under these circumstances, the subsequent effect of inertia
forcesis to reduce thelevel of transfer and eventually change its direction. Irrespective of the
initial conditions, therefore, after a finite time the direction of the transference of energy is
always from large to small eddies.

t Tables of g@(x; 0, 1), the so-called equi-anharmonic case, are given in Jahnke & Emde’s Tables of
Sunctions.
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"The asymptotic behaviour of the vorticity may easily be found from (69). Thus, if £, is the
time corresponding to x = 2x,, then as ¢—>f, the vorticity becomes infinite according to the
universal law

02 — @ t)2+ 0{(t,— 1), (70)
which is completely independent of the initial conditions. As is to be expected, however, the
time scale of the achievement of this asymptotic state does depend on the initial conditions,
since a measure of this scale is

2%y . 59
2(30f) T (0h)

These results refer, of course, to a frictionless fluid. In a real fluid, the infinite vorticity is
prevented by the diffusive properties of the viscosity.

ty = (71)

14~

12~

—
(=]
1

! | |
0 05 1-0 1-5 20
x[%,

Ficure 1. The production of vorticity

It will be noticed that the behaviour of the vorticity described above is in accordance with
the predictions of Kolmogoroff’s theory of local similarity. According to that theory, the
skewness factor § of the probability distribution of —du,/dx, is a universal constant for fields

of turbulence with sufficiently large Reynolds numbers. Hence, from the usual (exact)
formula d? 18

2)%
@ 55 (72)
for the production of vorticity by the stretching of vortex lines, it follows that
dw?)? ()2)3
(—&7) o (0?)?,

which is in agreement with (68) when the time of decay is great enough for the asymptotic
state (70) to have been established.
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It is, of course, true that the quantities considered in this section are predominantly
determined by eddy sizes much smaller than those in which the underlying approximation
in the probability distribution receives experimental support. Indeed, the whole concept of
a normal probability distribution is quite foreign to the statistical equilibrium of the smaller
eddies. The former property of the motion, when it exists, must in large measure be due
to the survival of initial circumstances which the mechanical processes are unable to destroy,
whereas the latter property is entirely brought about by these same processes. But it is just
for this reason that the results have seemed worth while presenting. The assumed relation
between fourth- and second-order velocity-product mean values may be regarded as a con-
straint on the small eddies, and it is an indication of the remarkable universality of Kolmo-
goroff’s ideas that, despite such an unsympathetic constraint, at least some aspects of the
small eddy motion inevitably approach the predicted asymptotic form irrespective of the
initial conditions.

At the same time, it is perhaps permissible to deduce that the properties of the present
model of turbulence at large wave-numbers are sufficiently realistic to ensure that no great
error will arise from this source in a discussion of the main energy-containing range of the
spectrum. A concrete illustration of this is the estimate of S obtained from (68) and (72);
for the theoretical value 0-78 compares quite favourably, under the circumstances, with
the observed value of about 0-35.

7. AN EXAMPLE OF THE DISTRIBUTION OF ENERGY TRANSFER

The results of the preceding section were concerned with the integral properties of energy
transfer and yielded no information about the distribution of this quantity throughout the
spectrum. However, it is possible to throw some light on the latter problem by calculating
the inviscid rate of change of the function 7'(k) according to equation (64), when some
simply shaped energy spectrum is substituted in the right-hand side of that equation. For
the sake of definiteness, this calculation may be considered as giving the initial rate of
growth of the function 7'(k) from a prescribed initial value of zero, when the given form of
E(k) represents the initial distribution of energy.

Now, a suitable choice of spectrum for this purpose is

E(k) = Eyxte ™, x = kfk,, (73)
where E, and £, are parameters independent of £. The energy distribution (73) is typical
of the purely viscous mechanism in the final period of decay of turbulence. If, therefore,
the parameters E, and %, are so chosen that the Reynolds number is in fact large, the region
of viscous dissipation of energy is removed to relatively large wave-numbers, and one would
expect a transfer mechanism to develop of the kind that is observed in practice. More
specifically, one would expect the general features of the initial distribution of dT'(k)/d¢ to
be somewhat similar to those observed in the function 7°() itself.

For the spectrum (73), the formula (64) gives

%] =K EgJ/m [%xz( — 124 5x2—2x%) e~
t=0
+ 4 ¥ 1
3 2\ o—212 £2
4x(4 x)e fﬁe d£+64‘\/2

1 We should also point out that the theory contains no adjustable parameters.

x*(7 4 x2) e-%ﬁ], (74)
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which isshown graphically in figure 2. Also included in the figure are the energy and energy-
dissipation curves, E(k) and k2E(k), for the purpose of providing dynamical wave-number
standards. Relative to the energy spectrum, the distribution of the loss of energy by the
energy-containing eddies of this particular field of turbulence appears to possess many of
the properties of typical distributions determined experimentally. Relative to the dissipa-
tion spectrum, however, the distribution of the transfer function is far from being in
accordance with observations at large Reynolds numbers. But such is to be expected;
experimental measurements are always made under conditions in which the smaller eddies
have reached some type of approximate equilibrium, and the example (74) merely represents
the initial movement towards such a state. Only the first-mentioned range of wave-numbers
is suitablef for comparison with experiment, and inasmuch as a single example may be
taken as evidence the qualitative features of the distribution are encouranging.

—0.3_
FIGure 2. An example of the rate of growth of energy transfer. Curve 1, the energy spectrum,
E(k)/E,; curve 2, the energy-dissipation spectrum, 0-4k2E(k) (k3 Ey; curve 3, [0T'(k)/0t],_o/k3 E3.

The magnitude of the rate of change (74) is also of interest. In the early stages of the decay

of this field of turbulence, the transfer function is given by the expansion

dT(k
T = 2B o, (75)
=0

and the time required for 7'(k) to grow, according to (75), to a value comparable with those
observed in practice is clearly an important index of the role likely to be played by inertia
forces throughout the subsequent course of the decay. The comparison with experiment is
best considered in terms of the triple-velocity correlation coefficient k(r) introduced by

T Quite apart, that is, from the further reason that this is the only range in which the underlying approxi-
mation receives experimental support.

- Vor. 247. A. 23
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von Kdrman & Howarth (1938), since direct measurements of this function have recently
been made by Stewart (1951). In the notation of §1, £(r) is defined by the equations

(u%ﬁk(r) = RIH(O’ I‘), r= (7’, 09 O)’ (76>

and it may be shown from the definitions of the Fourier transform (15) and the transfer
function (53) that

1/ 0 J 4

(5 +3) (5 B ke = [ Ton SR g (1)

ar r

0

<
<
T

[ SN ol

' ! N\ ] I |
0 1 ‘ 3 A N ———
-0-01-

y=k07’

Ficure 3. The triple correlation function corresponding to figure 3.

(see, for example, Batchelor 1953, p. 101). Hence, substituting the expression (74) in the
right-hand side of (77) one obtains after some algebra the resultf

J2
—4y(1564+10y2+y*) e~ —y (21 +Ty> —y*) e=¥* |+ O(%), (78)

23
K1) = Bkt | 21 J(m exf f5 12,/ (2m) (32—y) e exl g

where y = k,r. This function is shown graphically in figure 3.

The figure shows the theoretical maximum value of —4(r)/(Eyk3)* ¢ to be about 0-10,
whereas the maximum value of —k(r) obtained from Stewart’s measurements in the initial
period of decay is about 0-05. Hence, the requisite time for growth is

b5 (Eokg) (79)

This estimate is of the order of the characteristic period of the energy-containing eddies of
the spectrum (73), as is obviously demanded by the nature of the problem. What is relevant
to the present calculation, however, is the value of the numerical coefficient in (79), for it
appears that the experimental evidence sets fairly narrow limits to this number. Thus, it is

t A similar calculation was performed by Ellison (1952).


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DECAY OF A NORMALLY DISTRIBUTED VELOCITY FIELD 181

easily found that the proportion of the total energy lost by viscous dissipation (on the basis of
the initial rate of change) during the interval of time (79) is

R0)—() 24 (50
15(0) Ry

where R, is the initial value of the Reynolds number of turbulence usually denoted b§} this
symbol. For values of R, greater than about 20, therefore, the turbulence may be expected
to become fully developed in the sense characterized in practice by the initial period of
decay. For values of R, as small as 5, on the other hand, a substantial proportion of the
turbulent energy would be lost before the transfer process could attain its fully developed
level, and the decay would be more of the purely viscous type. This estimate of the ‘critical’
range of Reynolds numbers is very approximate, partly because only the initial rates of
change are employed and partly because the result will depend to some extent on the
initial choice of spectrum. Nevertheless, it is interesting to note that much the same estimate
was deduced by Batchelor & Townsend (1948) from experimental results, and that a change
in the coefficient in (79) by a factor of 5 or so would destroy the agreement to a noticeable
extent.

A further feature of the example (74) that is worth noting is the distribution of energy
transfer at small wave-numbers. Thus if this expression is expanded in a power series at the
origin, one finds that

prAR) t=0=£%E§k3x4+0(x6). (81)
Hence, the leading terms in the expansions of the energy spectrum and transfer function in
this example are of the same order in £, and this is contrary to existing notions about the
permanence of the large-scale components of a homogeneous turbulent motion. It is true,
of course, that there is very little energy involved in this region of the spectrum, and that the
effect on the decay process as a whole is negligible when the Reynolds number is large. But
the phenomenon, which turns out to be of considerable generality, has obvious interest and
is discussed in part III.

PART III. ENERGY TRANSFER AT SMALL WAVE-NUMBERS

The behaviour of the spectrum tensor ®;(k) and the energy-spectrum function E(£) at
small wave-numbers, with which thelarge-scale components of the turbulence are associated,
was considered first by Lin (1947) for isotropic turbulence and later by Batchelor (1949) for
homogeneous turbulence. The description of the motion of these large-scale components
given by these writers is that they are invariant throughout the entire decay process. As the
example of the previous section indicates, however, the predictions of the present theory
differ substantially from those of Lin and Batchelor. In the following sections, therefore,
we present a further study of the whole problem of energy transfer at small wave-numbers,
together with an examination of some of the relevant experimental data.

8. ISOTROPIC TURBULENCE

For simplicity, we consider first the behaviour of d T(k) /0t for small values of £ in isotropic
turbulence. Since viscous effects are negligible at small wave-numbers unless the Reynolds

23-2
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number is very small, it is permissible to begin with the inviscid rate of change (64). Thus,
the assumption that that equation may be expanded in powers of & leads to the result

T (k »E2(K') 1. ’
ﬁg ) :%ﬁjo %f)dk -+ O(kS). (82)

Now the integral occurring in this equation is quadratic in the energy spectrum and is
therefore non-negative whatever the form of £(k) and vanishes if, and only if, E(£) is itself
identically zero. This shows that the rate of change of the transfer function at small values
of % is of order k* for an arbitrary distribution of energy. It then follows that 7°(k) must
itself be of order &%, since, by the incompressibility condition, it cannot be of lower order.
A further consequence of the continuity condition at small wave-numbers is that the energy
spectrum E(k) is also of order £*; the behaviour of the spectrum in this region is described,

therefore, by the equations E() = C(£) k* + O (k) (83)

nd d2C(r) 14 waZ(/@

a2 15), 2 4k (84)

Hence, for the type of probability distribution under discussion, the coefficient of the leading
term in the expansion of E(£) cannot be an invariant of the motion.

Before examining the discrepancy between these results and those of Lin (1947) con-
cerning the permanence of the large-scale components of the motion, it is useful to consider
their significance in physical space. This may be done by employing the function

K() = (5+2) @iao), (35)

where k(r) is the usual triple correlation defined by equation (76). Thus, from equation (77),
the relation between this function and 7°(k) is
T(k) = f : K(r) (kr sin kr— k%2 cos kr) dr. (86)
Now, if 7'(k) is expanded in terms of the moments of K(r), then
T(k) = o B f : MK () dr + O(k9), (87)
and this expansion is consistent with equation (82) if, and only if,

f " HK(r) dr 0. o (s8)

0

The meaning of this integral in terms of the triple correlation £(r) is easily seen by sub-
stituting for K(r) from equation (85); a partial integration of (88) then gives

[ rK) ar = @) ()] | (89)

so that, provided the condition (88) is satisfied,

k(r) = O(r %) (90)
for large values of r.
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Now this behaviour of k() atlarge values of 7 is closely related to the dynamical behaviour
of Loitsiansky’s integral

AQ) = f " fir) rdr, (91)
0
where f(7) is the usual longitudinal velocity correlation coeflicient defined by the equations
w3 f{r) = Ry(r), r=(r,0,0); (92)
for, if the dynamical equation for f{r) (von Kdrman & Howarth 1938),

1) = (G55 S) B ) +K (), (93)

is multiplied by r* and integrated over all values of r, then one obtains

Sl arn i =" rKe) ar, (94)

0

where, as usuai, it has been assumed that [r*df(r)/dr],_, = 0. This last equation may also
be written in the form

dA(f)
19 — @y k), (95)
whence’, by equation (84), d:{;( 0 _ ls-ﬂf Ez(zk) dk, (96)

which shows that, for the probability distribution under discussion, Loitsiansky’s integral
is not an invariant of the motion.

The relationship between the present work and that of Lin (1947), who found that
T'(k) was of order £ for small values of £, is now clear. By assuming that 7°(k) could be
expanded in terms of the moments of £(7), Lin obtained the result

T(k) = Ekﬁf ()t k(r) 5 dr+ O (k8). (97)
Now the essential assumption underlying this result is that the function £(r) decreases
sufficiently rapidly at large values of r for the integral in the leading term to exist. In the
case of a normal probability distribution, however, the result (90) shows that this integral
isinfinite. By employing the function K(7) in the expansion of T(k), this particular difficulty
is avoided, since the behaviour £(r) ccr~* in no way influences the behaviour of K(r) at large
values of 7.

Thus, there is a clear-cut discrepancy between equations (87) and (97). It is necessary
therefore to examine the relative merits of the intuitive assumption that the triple correla-
tion decreases faster than 7~* and the dynamical evidence, obtained by assuming a normal
probability distribution, that it decreases like =%, Accordingly, we attempt, in the remaining
paragraphs of this section, to assess so far as possible the extent to which the result (90)
depends upon a normal probability distribution, and to examine the relevant experi-
mental data.
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184 I. PROUDMAN AND W. H. REID ON THE

For this purpose, it is convenient to consider first the general expansion of 7°(£) at small
values of £, without making any assumptions regarding the probability distribution of the
velocity field. From equation (54) this expansion is found to be

IOk’ K, O):|
P

TR) = i (288200, K, k) 8k
0

2 ’ n
__k’4|ja_fp%€k;ﬂl;_.io)] :qu_o(/&). (98)
K=k

All eddy sizes make a contribution to the coeflicient of £ in (98), and so it is virtually certain
that if this coefficient is to vanish at all times during decay it must do so for purely kine-
matical reasons. But the integral in (98) clearly does not vanish for such reasons, since in
the special case of a normal probability distribution, which is certainly kinematically
possible, its inviscid rate of change reduces to the non-zero form given by (82). We are led
to conclude, therefore, that a transfer function of smaller order than £* for small values of
k is extremely unlikely, and that the triple correlation £(r) will usually be of order r~* for
large values of 7. Apparently, intuitive reasoning about the rapidity of the tendency to
statistical independence of conditions at widely separated points in the turbulence leads
one astray for reasons that are intimately connected with the dynamical role of inertia
forces.

Further support for the foregoing conclusion is provided by the viscous contribution to
the rate of change of the transfer function at small wave-numbers. Thus, differentiating
(98) with respect to time, and substituting the rate of change

g—tq)(k, /C’, /C”) = _V(k2+k/2+/€”2) I(k; k’) k”))
one finds
37{9(") — _———}ngvk‘*fw {28/€'4(D(0, KL,k wlO/c"”[m 2 0)]
= o ok Py
0k’ k", 0) '
'6 sy _ 6
k [ ok"? :L,,=k,: dk O(k )’ (99)

which is again of order £%. Hence, even if the initial conditions are such that 7°(k) is of order
kS for small values of £, the action of viscosity alone is sufficient to ensure that this function
will be of order * at all subsequent times, unless further initial conditions are imposed on
the turbulence. These further conditions are that all the integral moments of ®(&, %", £"), like
those occurring in equations (98) and (99) obtained by successively differentiating equation
(98) with respect to time, must vanish initially. Such initial conditions would appear to be
very special indeed.

There remains the question of whether the coefficient of £* in equation (82) provides
a reasonable estimate of actual conditions when the Reynolds number is sufficiently large
for the viscous contribution (99) to be negligible. In this connexion, it may be noted that
the integral occurring in equation (82) is weighted fairly sharply in favour of a group of
eddies somewhat larger than the energy-containing eddies of the turbulence; somewhat
larger, in fact, than the eddies to which the experimental evidence in favour of a normal
probability distribution directly relates. Thus, it is not possible to assess the validity of
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equation (82) with any certainty. If, however, the assumed form of the probability dis-
tribution is valid for these larger eddies, though not necessarily for the very large com-
ponents in which E(k) is proportional to k%, then the equation should be substantially
correct; otherwise, the coefficient of £ may possibly be in error by as much as an order of
magnitude.

In view of the foregoing theoretical suggestions regarding the behaviour of the large-scale
components of the motion, it is of interest to examine the relevant experimental data.
Unfortunately, the experimental results (Stewart & Townsend 1951) relevant to the pre-
diction that £(r) = O(r~*) for large values of r are inconclusive; for, if a law of the form 7=
is fitted to the available data, it is found that # only reaches a valué of about 1-8 at the largest
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Ficure 4. The triple correlation function K(r) during decay of turbulence at
R, = 5300. x/M: ®,60; O, 90.

values of 7 for which measurements have been made. An alternative presentation of these
results may be made by computing the function K(r). For a different purpose, this calcula-
tion was carried out by Stewart (1951), and the curve in figure 4 is based upon his values.
In this and subsequent figures referring to experimental data, x is the distance downstream
from the grid producing the turbulence, and R,, = UM]v, where M is the grid spacing and
U is the velocity of the mainstream. It may be noted that K(r) does not change sign, so
that the condition
ﬁ%m@m:m

which is necessary if £(r) decreases more rapidly than r=4, though not precluded, is hardly
suggested by the available experimental evidence.

The question now arises as to whether the first few integral moments of K(r) itself are
finite, for this has been assumed in expanding 7'() in the form (87). Here again, the direct
experimental evidence is inconclusive. However, if the behaviour of the correlation function

J{(r) is such that its integral moments of order up to and including Loitsiansky’s integral are
finite, then the dynamical equation (93) ensures that the corresponding moments of K (r)
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186 I. PROUDMAN AND W. H. REID ON THE

exist. Thus, a sufficient condition for the validity of the leading term of the expansion (87)
is simply the existence of Loitsiansky’s integral. There is, in fact, a striking difference
between the measurements of /(r) and K(r) on the one hand, and £(r) on the other. This is
displayed in figures 5 and 6, which are again based on the measurements of Stewart (1951).
In view of the preceding analysis, the slow decrease of £(r) compared with that of K(r) and

Jf(r) is very suggestive.
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Ficure 5. x/M = 30. Curve 1, R, = 5300; curve 2, R, = 42000.
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Ficure 6. x/M = 30. Curve 1, R,,= 5300; curve 2, R, = 42000,

9. HOMOGENEOUS TURBULENCE

While the study of energy transfer at small wave-numbers in isotropic turbulence
introduces the problem in its simplest context, nevertheless, it is of considerable interest to
extend these results as far as possible to the more general case of homogeneous turbulence.
This more general aspect of the problem has already been considered in some detail by
Batchelor (1949). But, since Batchelor’s results reduce to Lin’s in the special case of isotropic
turbulence, it follows that there must be a fundamental discrepancy between the basic
assumptions employed by Batchelor and those of the present analysis. The primary purpose
of this section is to examine the nature of this discrepancy.
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In order to exhibit as clearly as possible both the similarities and the differences between
the present theory and Batchelor’s results, consider first the dynamical equation for ®;(k)
in homogeneous turbulence, which may be written in the form (cf. equation (33))

(%@,.j(k) — X, (K) — 20kD (K), (100)
where %, (k) = 02{kk A#(K) f O, (k, k') dk’}. (101)

The tensor %;(k) plays essentially the same role in homogeneous turbulence that the
transfer function 7°(k) does in isotropic turbulence. Indeed, when the turbulence is isotropic
T'(k) is the defining scalar of X;(k) in exactly the same sense as E(k) is the defining scalar of
O, (k) (cf. equation (48)). Accordingly, in a discussion of energy transfer at small wave-
numbers we are primarily interested in the behaviour of Z;(K) for small values of £.

In order to keep the analysis as simple as possible, it is assumed throughout this section
that the probability distribution of the velocity field is normal; for, if the conclusions
reached in the case of isotropic turbulence are valid, then it is clear that this assumption
retains all the essential features of the problem. Moreover, in calculating the rate of change
of 2,;(k), we again assume the Reynolds number to be sufficiently large for viscous con-
tributions of the type (99) to be negligible. Thus, if the inviscid rate of change of @, (k, k')
(equation (42)) is substituted into the time derivative of equation (101), and d%;;(K)/d¢ is
expanded in powers of the components of K, one finds after some reduction that

0

55 Zu(k) = 2k k, Az (k) Af(k f[d)“l k') @, 5(K) + D, ,(k") ,,,(k")] dk’ -+ O(k%), (102)

and this result shows that dX,;(K)/d¢ is of order £2 for small values of .
On the other hand, Batchelor (1949) found that (k) = O(#%), and hence that, in his
expansion for the spectrum tensor

@, (K) = Cyyn bk, + O (RY), (103)

the coefficient C;;,, is invariant throughout the entire decay process. The result (102) clearly
does not permit such invariance, and it is necessary to compare the two analyses in greater
detail. Batchelor works entirely in terms of the single vector k and the tensorst

Y,k f (K, K') dK, (104)

which is essentially the Fourier transform of Rj(r, 0) = #(xX) u;(X+r) #,(xX), and IL;(k)

which, by the continuity condition, is related to Y;;;(Kk) in the manner (cf. equation ( 32))
F21L (k) = Kk, Y (K). (105)

By assuming that both of these tensors could be expanded as power series in k, Batchelor
found, as a consequence of the incompressibility condition at small wave-numbers, that

T(K) = kT oo and Yip(K) = & Yt (106)

T The tensors Y, (k) and II;(k) used here are denoted by —iY,;(k) and —1®j(k) respectively by
Batchelor (1953).
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where the coefficients II;; and Yj;;, are completely independent of k and satisty certain
permutation relations. Then by substituting these expansions into equation (105), he
derived a further relationship between II;; and Yj;,, which is completely equivalent to the
statement that Y};,, must be expressible in the form

Tijkl Jlm [Am zk—i—Bkaim_}_Bié\km]? (107)

where the vectors A and B are independent of k and ¢, is the alternating tensor. Now
2,.(kK) may be written in the form

5,(k) = O,fk A3(K) Y, ()}, (108)

l]

and when the explicit expansion of Y, (k) in terms of the vectors A and B is substituted
into this equation one obtains the result found by Batchelor (1949), namely, that X;(k) is
of order £3 for small values of £.

The discrepancy between this result and equation (102) may be traced to assumptions
of the type (106), and is best illustrated by considering the special case of isotropic turbulence
while still retaining the tensor form in the analysis. Thus, the tensor Yj; (k) is orthogonal
with respect to Kk in the index j and symmetric in the indices ¢ and £; it may therefore be

written in the form T,-jk(k) _ A/f(k) (kié\pk“i‘kka )Y(R), (109)

where Y'(k) is an even scalar function of £ which we suppose to possess an expansion of the

form
Y(k) = Y(0) +Y"(0) + O(k%). (110)

Now, by virtue of the non-analytic nature of the factor
A(K) = 0;5—k; kp/k?

near k = 0, Batchelor’s assumption (106) that Yj;,(k) must be analytic in the individual
components of k leads to the condition

Y(0) =0, (111)
and hence that 2 (k) = (k20 —kk;) Y(k) (112)

is of order £*. If, however, Y(0) does not vanish, then Yj;,
clearly of order £2.

Now, if the arguments presented in the preceding section are valid, a normal probability
distribution of the velocity field may be regarded as ‘typical’ for the purpose in hand, and
equation (102) then shows that Z;(k) is of order £ for small values of k. A comparison with
Batchelor’s results then indicates that Y, (K) cannot be an analytic function of k. In this
connexion, we should remark that a non-analytic behaviour of Y; (k) implies the non-
existence of certain integral moments of R, (r,r’), which agrees with the specific form of
the difference between the present results and those of Lin in the case of isotropic turbulence.

There is, however, a further difficulty in homogeneous turbulence which does not arise
in the isotropic case. Equation (112) shows that, in isotropic turbulence, %;(k) is an
analytic function even when Y(0) ==0. Thus, a non-analytic form of Y;;;(k) is dynamically
consistent with an analytic spectrum tensor ®;(K). This appears not to be the case in
homogeneous turbulence; for, due to the presence of the factor A#(k) A?(k), the coefficient

(k) is non-analytic and %;(Kk) is
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of k,k,, in equation (102) depends in general on the direction of k, and this is inconsistent
with a simple expansion of the type (103) assumed by Batchelor. Clearly, there is here
a new type of difficulty which is necessarily encountered in any analysis that takes into

account the dynamical equation for @, (k, k"). For, unless it can be demonstrated that the

conditions under which %;(k) is an analytic function are relatively mild, the conclusion
seems inescapable that an analytic spectrum tensor ®;;(k) is dynamically impossible. In
the case of a normal probability distribution, we have not been able to find such a
demonstration.

In conclusion, we wish to thank Dr G. K. Batchelor, Dr T. H. Ellison and Dr A. A.
Townsend for the many hours they have spent discussing with us the various problems
examined in this paper.
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